# Making and breaking post-quantum cryptography from elliptic curves

Chloe Martindale

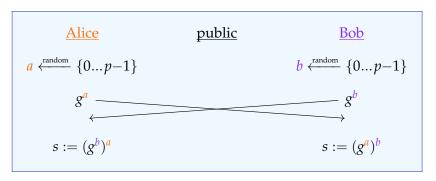
University of Bristol

17th April 2023

# Recall: Diffie-Hellman key exchange '76

#### Public parameters:

- ▶ a finite group G (typically  $\mathbb{F}_q^*$  or  $E(\mathbb{F}_q)$ )
- ▶ an element  $g \in G$  of (large) prime order p



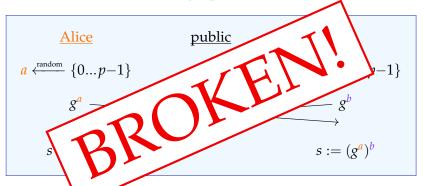
The Discrete Logarithm Problem, finding a given g and  $g^a$ , should be hard<sup>1</sup> in  $\langle g \rangle$ .

<sup>&</sup>lt;sup>1</sup>Complexity (at least) subexponential in log(p).

## Recall: Diffie-Hellman key exchange '76

#### Public parameters:

- ▶ a finite group G (typically  $\mathbb{F}_q^*$  or  $E(\mathbb{F}_q)$ )
- ▶ an element  $g \in G$  of (large) prime order p



The Discrete ogarithm Problem, finding a given g and  $g^a$ , should be hard<sup>1</sup> in  $\langle g \rangle$ .

<sup>&</sup>lt;sup>1</sup>Complexity (at least) subexponential in log(p).

#### Quantumifying Exponentiation

► Couveignes '97, Rostovtsev, Stolbunov '04: Idea to replace the Discrete Logarithm Problem: replace exponentiation

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

#### Quantumifying Exponentiation

► Couveignes '97, Rostovtsev, Stolbunov '04: Idea to replace the Discrete Logarithm Problem: replace exponentiation

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

▶ Replace *G* by a (sub)set *S* of the elliptic curves  $E/\mathbb{F}_q$  with commutative End(E) =  $\mathcal{O}$ .

#### Quantumifying Exponentiation

► Couveignes '97, Rostovtsev, Stolbunov '04: Idea to replace the Discrete Logarithm Problem: replace exponentiation

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

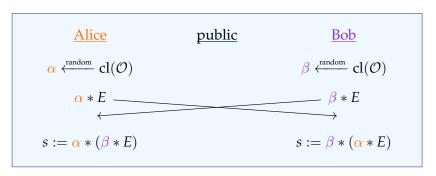
- ▶ Replace *G* by a (sub)set *S* of the elliptic curves  $E/\mathbb{F}_q$  with commutative End(E) =  $\mathcal{O}$ .
- ► Replace  $\mathbb{Z}$  by  $cl(\mathcal{O})$ ; this acts freely and transitively on S via isogenies:

$$\begin{array}{ccc} \operatorname{cl}(\mathcal{O}) \times S & \to & S \\ (\alpha, E) & \mapsto & \alpha * E := \alpha(E) \end{array}$$

# Couveignes-Rostovstev-Stolbunov key exchange

#### Public parameters:

- ▶ the finite set S (of some  $E/\mathbb{F}_q$  with  $\operatorname{End}(E) = \mathcal{O}$ ),
- ▶ an element  $E \in S$ ,
- ▶ the group  $cl(\mathcal{O})$ ; acts on S via \*.



Finding  $\alpha$  given E and  $\alpha * E$ , should be hard.<sup>2</sup>

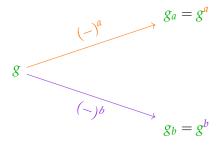
<sup>&</sup>lt;sup>2</sup>Complexity (at least) subexponential in  $\log(\#S)$ .

#### From CRS to CSIDH

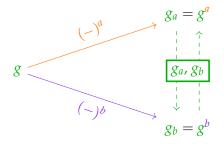
- 1997 Couveignes proposes the now-CRS scheme.
  - ▶ Uses ordinary elliptic curves/ $\mathbb{F}_p$  with same end ring.
  - ► Paper is rejected and forgotten.
- 2004 Rostovstev, Stolbunov rediscover now-CRS scheme.
  - ▶ Best known quantum and classical attacks are exponential.
- 2005 Kuperberg: quantum subexponential attack for the dihedral hidden subgroup problem.
- 2010 Childs, Jao, Soukharev apply Kuperberg to CRS.
  - ► Secure parameters  $\rightsquigarrow$  key exchange of 20 minutes.
- 2011 Jao, De Feo propose SIDH [more to come!].
- 2017 De Feo, Kieffer, Smith use modular curves to do a CRS key exchange in 8 minutes.
- 2018 Castryck, Lange, M., Panny, Renes propose CSIDH.
  - ▶ CRS but with supersingular elliptic curves  $/\mathbb{F}_p$ .
  - ▶ *p* constructed to make scheme efficient.
  - ► Key exchange runs in 60ms.



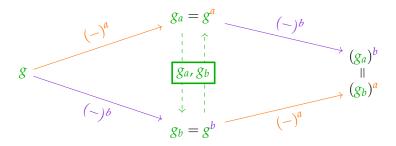
#### Diffie-Hellman



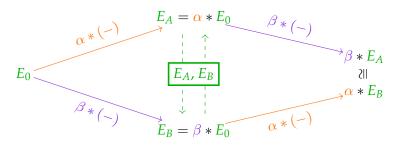
#### Diffie-Hellman



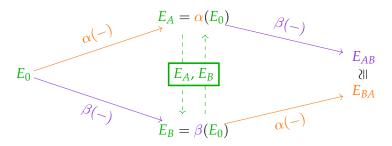
#### Diffie-Hellman



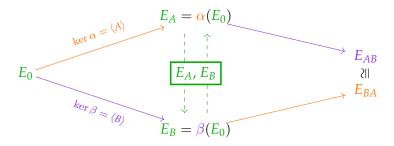
#### CRS or CSIDH



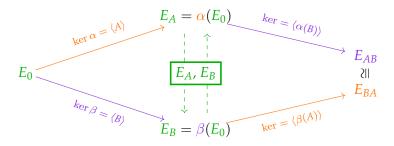
#### From CRS to SIDH



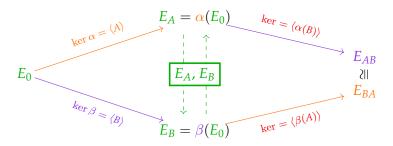
#### From CRS to SIDH



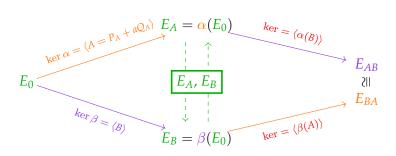
#### From CRS to SIDH



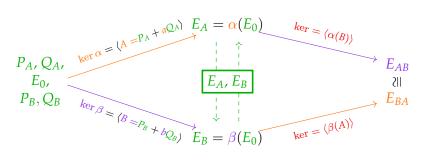
#### From CRS to SIDH



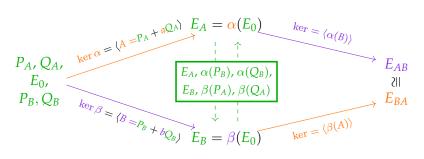
#### From CRS to SIDH

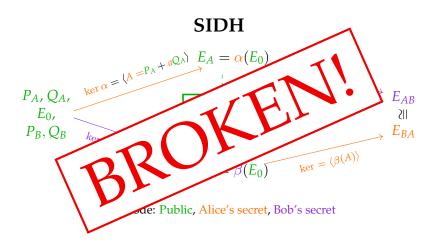


#### From CRS to SIDH



#### **SIDH**





▶ Diffie-Hellman – The Discrete Logarithm Problem, finding a given g and  $g^a$ .

- ▶ Diffie-Hellman The Discrete Logarithm Problem, finding a given g and  $g^a$ .
- ► CRS / CSIDH Finding  $\alpha$  given E and  $\alpha * E$ .

- ▶ Diffie-Hellman The Discrete Logarithm Problem, finding a given g and  $g^a$ .
- ► CRS / CSIDH Finding  $\alpha$  given E and  $\alpha * E$ .
- ► All isogeny-based schemes Given elliptic curves  $E_0$  and  $E_A$ , compute an isogeny  $\alpha : E_0 \rightarrow E_A$  if it exists.

- ▶ Diffie-Hellman The Discrete Logarithm Problem, finding a given g and  $g^a$ .
- ► CRS / CSIDH Finding  $\alpha$  given E and  $\alpha * E$ .
- ► All isogeny-based schemes Given elliptic curves  $E_0$  and  $E_A$ , compute an isogeny  $\alpha : E_0 \rightarrow E_A$  if it exists.
- ► SIDH -

Let p be a large prime and N, M large smooth prime integers. Given public supersingular elliptic curves  $E_0/\mathbb{F}_{p^2}$  and  $E_A/\mathbb{F}_{p^2}$ , the existence of a secret isogeny  $\alpha: E_0 \to E_A$  of degree M, and the action of  $\alpha$  on  $E_0[N]$ , compute  $\alpha$ .

## History of the SIDH problem

- 2011 Problem introduced by De Feo, Jao, and Plut
- 2016 Galbraith, Petit, Shani, Ti give active attack
- 2017 Petit gives passive attack on some parameter sets
- 2020 de Quehen, Kutas, Leonardi, M., Panny, Petit, Stange give passive attack on more parameter sets
- 2022 Castryck-Decru and Maino-M. give passive attack on SIKE parameter sets; Robert extends to all parameter sets
  - ► CD and MM attack is subexponential in most cases
  - ► CD attack polynomial-time when  $End(E_0)$  known
  - Robert attack polynomial-time in all cases



Finding the secret isogeny  $\alpha$  of known degree.



▶ Restriction # 1: Assume we can choose  $\iota : E_0 \to E_0$ .

Finding the secret isogeny  $\alpha$  of known degree.



▶ Restriction # 1: Assume we can choose  $\iota : E_0 \to E_0$ .



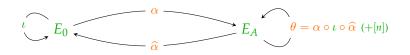
- ▶ Restriction # 1: Assume we can choose  $\iota : E_0 \to E_0$ .
- ► Know  $\alpha(E_0[N])$  (and  $\widehat{\alpha}(E_A[N])$ ) from public torsion points.



- ▶ Restriction # 1: Assume we can choose  $\iota : E_0 \to E_0$ .
- ► Know  $\alpha(E_0[N])$  (and  $\widehat{\alpha}(E_A[N])$  from public torsion points.
- Know  $deg(\theta) = deg(\alpha)^2 deg(\iota) + n^2$ .



- ▶ Restriction # 1: Assume we can choose  $\iota : E_0 \to E_0$ .
- ► Know  $\alpha(E_0[N])$  (and  $\widehat{\alpha}(E_A[N])$  from public torsion points.
- Know  $deg(\theta) = deg(\alpha)^2 deg(\iota) + n^2$ .
- ► Restriction # 2: If there exist  $\iota$ , n such that  $deg(\theta) = N$ , then can completely determine  $\theta$ , and  $\alpha$ , in polynomial-time.



- ▶ Restriction # 1: Assume we can choose  $\iota : E_0 \to E_0$ .
- ► Know  $\alpha(E_0[N])$  (and  $\widehat{\alpha}(E_A[N])$  from public torsion points.
- Know  $deg(\theta) = deg(\alpha)^2 deg(\iota) + n^2$ .
- ► Restriction # 2: If there exist  $\iota$ , n such that  $deg(\theta) = N$ , then can completely determine  $\theta$ , and  $\alpha$ , in polynomial-time.
- ► Restriction # 2 rules out SIKE parameters, where  $N \approx \deg(\alpha)$  and  $p \approx N \cdot \deg \alpha$ .

Let p be a large prime and N, M large smooth prime integers. Given public supersingular elliptic curves  $E_0/\mathbb{F}_{p^2}$  and  $E_A/\mathbb{F}_{p^2}$ , the existence of a secret isogeny  $\alpha: E_0 \to E_A$  of degree M, and the action of  $\alpha$  on  $E_0[N]$ , compute  $\alpha$ .

Let p be a large prime and N, M large smooth prime integers. Given public supersingular elliptic curves  $E_0/\mathbb{F}_{p^2}$  and  $E_A/\mathbb{F}_{p^2}$ , the existence of a secret isogeny  $\alpha: E_0 \rightarrow E_A$  of degree M, and the action of  $\alpha$  on  $E_0[N]$ , compute  $\alpha$ .

#### Problem:

Not enough choices  $\theta: E_A \to E_A$ . 'No  $\theta$  of degree N.'

Let p be a large prime and N, M large smooth prime integers. Given public supersingular elliptic curves  $E_0/\mathbb{F}_{p^2}$  and  $E_A/\mathbb{F}_{p^2}$ , the existence of a secret isogeny  $\alpha: E_0 {\rightarrow} E_A$  of degree M, and the action of  $\alpha$  on  $E_0[N]$ , compute  $\alpha$ .

#### **Problem:**

Not enough choices  $\theta: E_A \to E_A$ . 'No  $\theta$  of degree N.'

Solution?  $\theta: E_0 \times E_A \to E_0 \times E_A$ ?  $\rightsquigarrow$  still not enough.

Let p be a large prime and N, M large smooth prime integers. Given public supersingular elliptic curves  $E_0/\mathbb{F}_{p^2}$  and  $E_A/\mathbb{F}_{p^2}$ , the existence of a secret isogeny  $\alpha: E_0 {\rightarrow} E_A$  of degree M, and the action of  $\alpha$  on  $E_0[N]$ , compute  $\alpha$ .

#### **Problem:**

Not enough choices  $\theta: E_A \to E_A$ . 'No  $\theta$  of degree N.'

Solution?  $\theta: E_0 \times E_A \to E_0 \times E_A$ ?  $\rightsquigarrow$  still not enough. But!

Let p be a large prime and N, M large smooth prime integers. Given public supersingular elliptic curves  $E_0/\mathbb{F}_{p^2}$  and  $E_A/\mathbb{F}_{p^2}$ , the existence of a secret isogeny  $\alpha: E_0 {\rightarrow} E_A$  of degree M, and the action of  $\alpha$  on  $E_0[N]$ , compute  $\alpha$ .

#### **Problem:**

Not enough choices  $\theta: E_A \to E_A$ . 'No  $\theta$  of degree N.'

Solution?  $\theta: E_0 \times E_A \to E_0 \times E_A$ ?  $\rightsquigarrow$  still not enough. But! Kani's theorem:

► Constructs  $E_1$ ,  $E_2$  such that there exists a (N, N)-isogeny

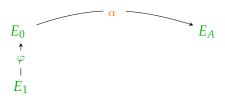
$$E_1 \times E_A \rightarrow E_0 \times E_2$$
.

► Petit's trick then applies.

#### Recovering the secret

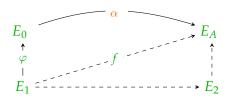


## Recovering the secret



## Recovering the secret

Finding the secret isogeny  $\alpha$  of known degree.



Kani's theorem constructs the above such that

$$\Phi = \begin{pmatrix} \varphi & -\widehat{\alpha} \\ * & * \end{pmatrix} : E_1 \times E_A \to E_0 \times E_2$$

is a (N, N)-isogeny, and

$$\ker(\Phi) = \{(\deg(\alpha)P, f(P)) : P \in E_1[N]\}$$

 $\rightsquigarrow$  can compute  $\Phi$  and read off secret  $\alpha$ !

## Recovering the secret with Robert's trick

Finding the secret isogeny  $\alpha$  of known degree.



constructs the above such that

$$\Phi = \begin{pmatrix} \varphi & -\widehat{\alpha}^4 \\ * & * \end{pmatrix} : E_0 \times E_A \to E_0 \times E_A$$

is a (N, N)-isogeny, and

 $ker(\Phi)$  is known

 $\rightsquigarrow$  can compute  $\Phi$  and read off secret  $\alpha$ !

#### What next?

- ► Fouotsa, Moriya, and Petit proposed mitigations
  - ► Masks either torsion point images or isogeny degrees
  - ► The mitigations make SIKE/SIDH unusably slow and big
  - ► For advanced protocols may still be a good option (c.f. Basso's OPRF, threshold schemes, etc.)

#### What next?

- ► Fouotsa, Moriya, and Petit proposed mitigations
  - ► Masks either torsion point images or isogeny degrees
  - ► The mitigations make SIKE/SIDH unusably slow and big
  - ► For advanced protocols may still be a good option (c.f. Basso's OPRF, threshold schemes, etc.)
- ► Constructive applications?
  - ► Work in progress with Maino and Robert
    - → computing genus 2 cyclic isogenies.

#### What next?

- ► Fouotsa, Moriya, and Petit proposed mitigations
  - ► Masks either torsion point images or isogeny degrees
  - ► The mitigations make SIKE/SIDH unusably slow and big
  - ► For advanced protocols may still be a good option (c.f. Basso's OPRF, threshold schemes, etc.)
- ► Constructive applications?
  - ► Work in progress with Maino and Robert ~ computing genus 2 cyclic isogenies.

## Thank you!